V 2.3

Revised 8/25

EZO-PRSTM

Embedded Pressure Sensor

Type Compound pressure sensor

Reads psi (-14.7 to 65) Default

atm (-1 to 4.42)

bar (-1 to 4.48)

kPa (-101.3 to 488)

inches of water (0 - 1,800")

cm of water (0 - 4,570 cm)

Response time 1 reading per second

Resolution 0.001

Accuracy +/- 1.35% (1psi)

Threaded connection 1/4" NPT

Cable 1 meter / 5 lead

Data protocol UART & I²C

Default I²C address 106 (0x6A)

Data format ASCII

Operating voltage 3.3V - 5V

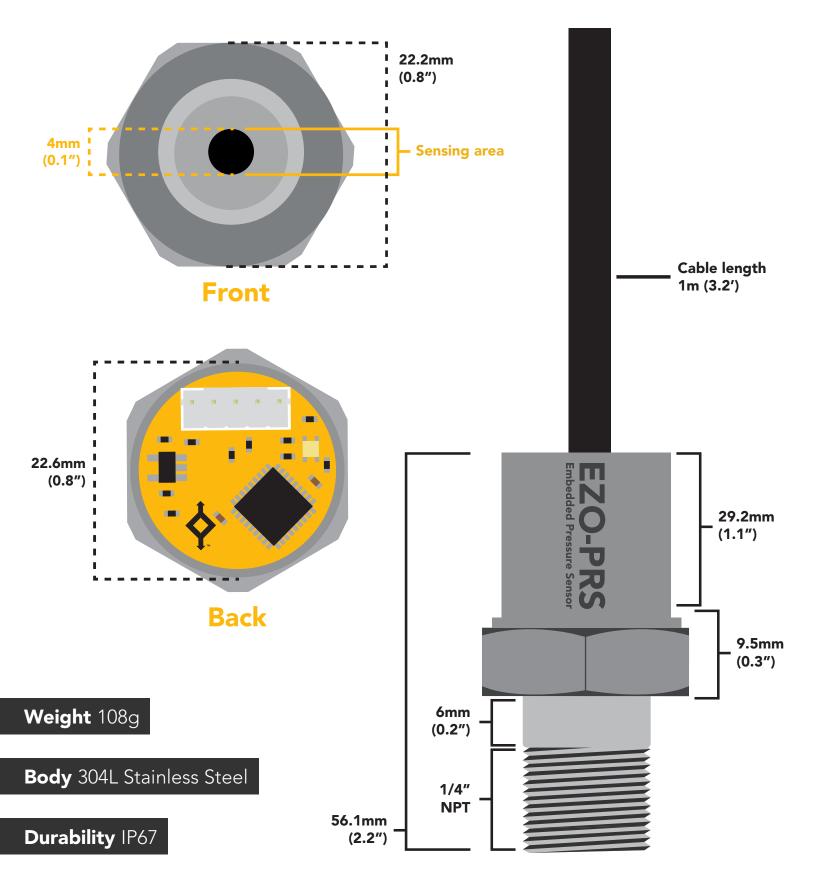
Water resistant/dust proof IP67

Table of contents

EZO-PRS™ dimensions	3	Typical applications	6
Operating principle	4	Calibration theory	8
Power consumption	4	Pin out	8
Absolute max ratings	4	Default state	9
Gauge pressure vs	5	Available data protocols	10
Absolute pressure			

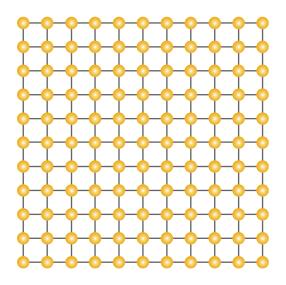
UART

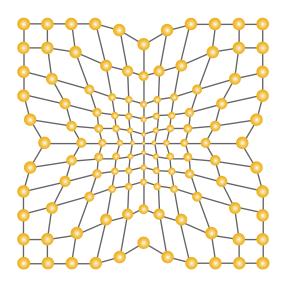
UART mode	12
Receiving data from device	13
Sending commands to device	14
LED color definition	15
UART quick command page	16
LED control	17
Find	18
Continuous mode	19
Single reading mode	20
Alarm	21
Custom calibration	22
Add/remove decimal places	23
Pressure units	24
Naming device	25
Device information	26
Response codes	27
Reading device status	28
Sleep mode/low power	29
Change baud rate	30
Protocol lock	31
Factory reset	32
Change to I ² C mode	33
Manual switching to I ² C	34


I²C

I ² C mode	36
Sending commands	37
Requesting data	38
Response codes	39
LED color definition	40
I ² C quick command page	41
LED control	42
Find	43
Taking reading	44
Alarm	45
Custom calibration	46
Add/remove decimal places	47
Pressure units	48
Naming device	49
Device information	50
Reading device status	51
Sleep mode/low power	52
Protocol lock	53
I ² C address change	54
Factory reset	55
Change to UART mode	56
Manual switching to UART	57

Datasheet change log	58
Firmware updates	59
Warranty	60


EZO-PRS[™] dimensions



Operating principle

Internally the pressure sensor uses a piezoresistive semiconducting element. The semiconducting element (a silicon wafer) changes its resistance in proportion to pressure. As the pressure increases the atomic spacing of the silicon atoms decreases, this in turn lowers the resistance of the silicon wafer.

Atmospheric pressure

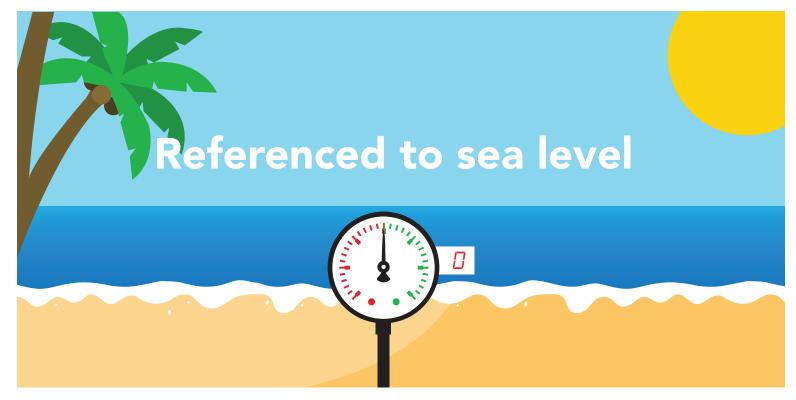
50 PSI

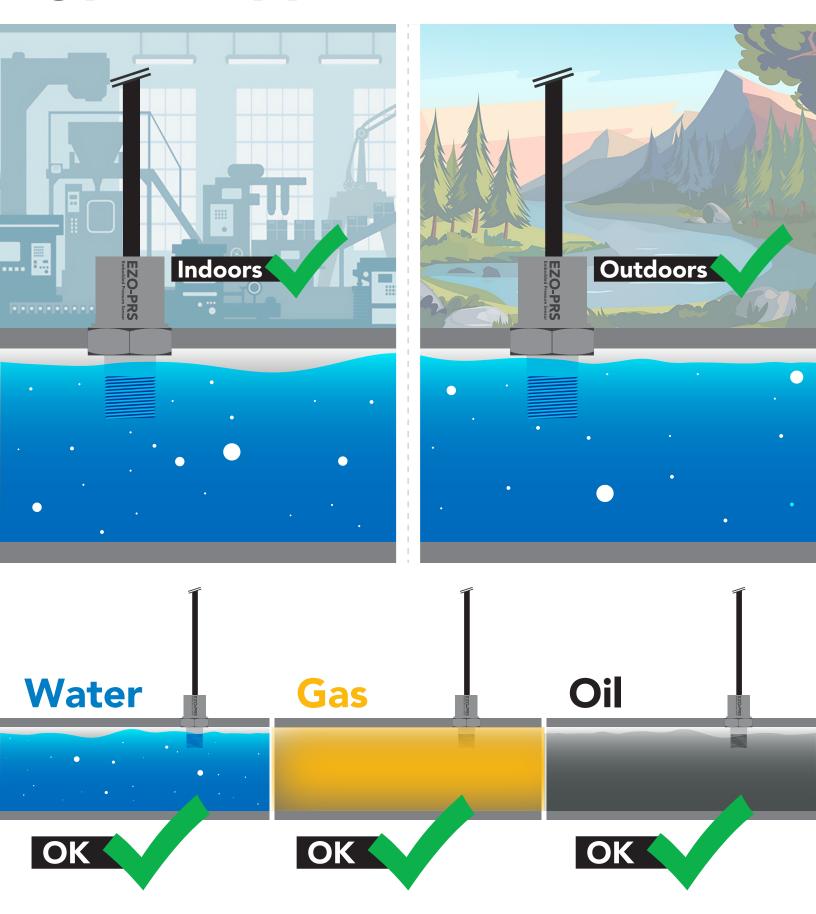
Chemical compatibly

Any gas, liquid or oil compatible with 304L Stainless Steel.

	LED	MAX	STANDBY	SLEEP
5V	ON	14.25 mA	14.25 mA	1.66 mA
	OFF	14.00 mA	14.00 mA	
3.3V	ON	13.21 mA	13.21 mA	0.85 mA
	OFF	12.95 mA	12.95 mA	

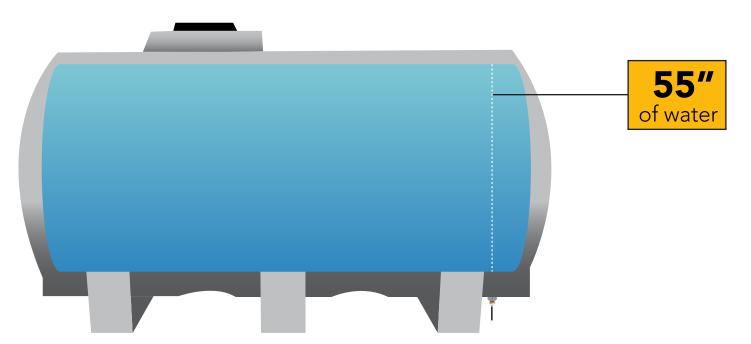
Power consumption Absolute max ratings


Parameter	MIN	TYP	MAX
Storage temperature (EZO-Pressure)	-65 °C		125 °C
Operational temperature (EZO-Pressure)	-40 °C	25 °C	105 °C
VCC	3.3V	5V	5.5V
Pressure limit (sensor damage)			~150 psi
Burst Pressure			7,500 psi


Compound pressure sensor

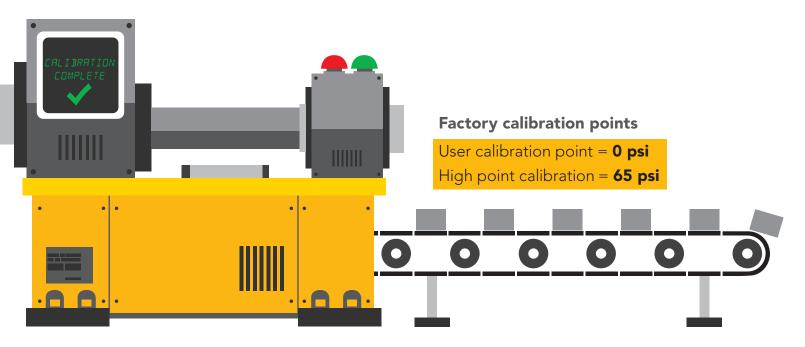
This is a compound pressure sensor. It reads both positive and negative pressures. The sensor is referenced to sea level.

Typical applications



Typical applications

Measuring the water level in a tank


Setting the EZO-PRS[™] to measure the hight of water is a great way to measure the volume of a tank. See page **24** or **48** for more info.

Calibration theory

The Atlas Scientific EZO-PRS™ Embedded Pressure Sensor comes pre-calibrated. However, when using the sensor for the first time, it is common to see a small pressure reading even though it is not connected to a pressure source. Issue the "Cal,0" command to calibrate the sensor to its new environment.

Pin out

Data and power cable pinout

White - RX/SCL

Green - TX/SDA

Black - GND

Red - VCC

Blue - ALM

Should you need to remove this connector from the data cable, follow the provided illustration.

The alarm pin will go high when a set pressure level has been crossed.

35

VCC

*Alarm set to 35

If unused leave ALM floating. Do not connect ALM to VCC or GND.

Default state

UART mode

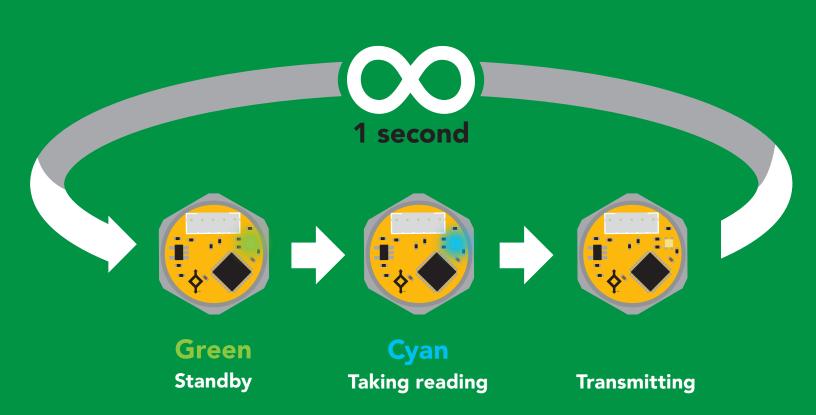
Baud

Readings

Units

Speed

LED


9,600

continuous

PSI

1 reading per second

on

Available data protocols

UART

Default

1²C

X Unavailable data protocols

SPI

Analog

RS-485

Mod Bus

4-20mA

UART mode

Settings that are retained if power is cut

Baud rate Calibration

Continuous mode

Custom calibration

Device name

Enable/disable response codes

Hardware switch to I²C mode

LED control

Protocol lock

Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find Sleep mode

UART mode

8 data bits 1 stop bit

no parity no flow control

Baud 300

1,200

2,400

9,600 default

19,200 38,400 57,600

115,200

Data in

Data out

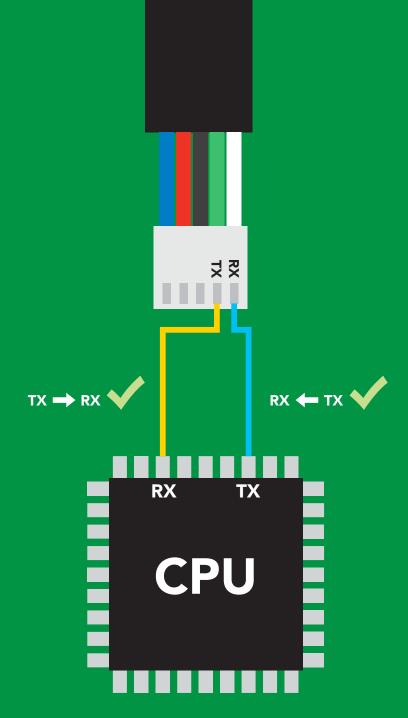
Vcc 3.3V - 5.5V

Data format

Output

pressure

Units PSI default


(ATM, kPa, bar, inch's of water cm of water)

Encoding

ASCII

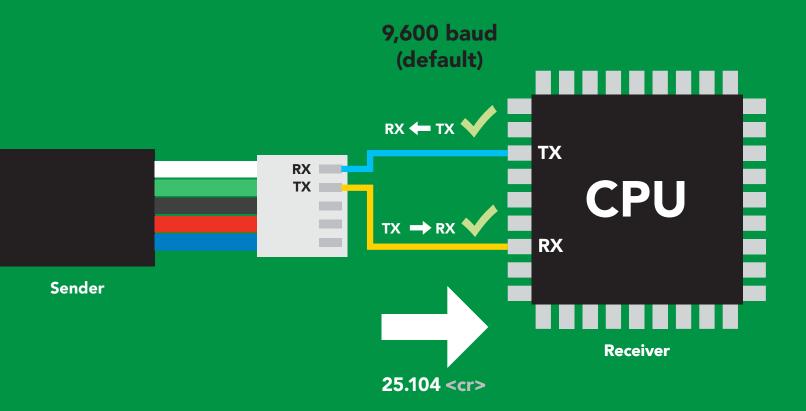
Format

string

Terminator Data type **Decimal places 3**

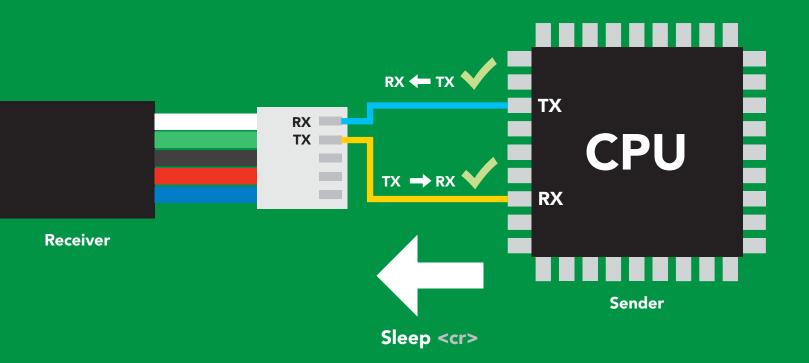
Largest string

carriage return floating point


Smallest string 3 characters

39 characters

Receiving data from device



Advanced

ASCII: 2 32 35 2E 31 30 34
 50
 53
 46
 49
 48
 52
 13
 Dec:

Sending commands to device

Advanced

LED color definition

Green **UART standby**

Cyan Taking reading

Changing baud rate

Command not understood

White Find

LED ON **5V** +.25 mA 3.3V +.26 mA

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Alarm	enable/disable alarm	pg. 21	n/a
Baud	change baud rate	pg. 30	9,600
С	enable/disable continuous mode	pg. 19	enabled
Cal	performs custom calibration	pg. 22	n/a
Dec	add/remove decimal places	pg. 23	n/a
Factory	enable factory reset	pg. 32	n/a
Find	finds device with blinking white LED	pg. 18	n/a
i	device information	pg. 26	n/a
I2C	change to I ² C mode	pg. 33	not set
L	enable/disable LED	pg. 17	enabled
Name	set/show name of device	pg. 25	not set
Plock	enable/disable protocol lock	pg. 31	disabled
R	returns a single reading	pg. 20	n/a
Sleep	enter sleep mode/low power	pg. 29	n/a
Status	retrieve status information	pg. 28	enable
U	pressure units	pg. 24	psi
*ОК	enable/disable response codes	pg. 27	enable

LED control

Command syntax

L,1 <cr> LED on default

L,0 <cr> LED off

L,? <cr> LED state on/off?

Example

Response

L,1 <cr>

*OK <cr>

L,0 <cr>

*OK <cr>

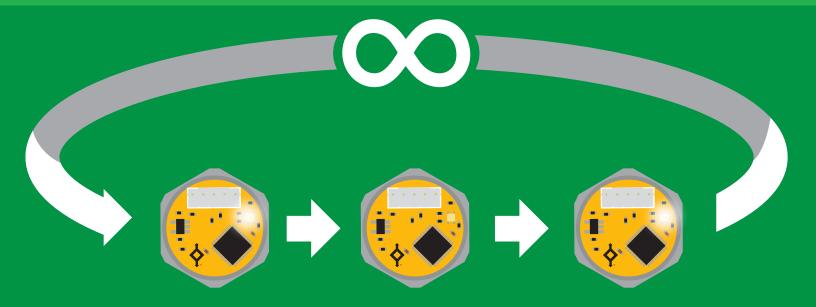
L,? <cr>

?L,1 <cr> or ?L,0 <cr>>

*OK <cr>

Find

Command syntax


This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device

Example Response

Find <cr>

*OK <cr>

Continuous mode

Command syntax

C,1 <cr> enable continuous readings once per second default

C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)

C,0 <cr> disable continuous readings

C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> pressure (1 sec) <cr> pressure (2 sec) <cr> pressure (n sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> pressure (30 sec) <cr> pressure (60 sec) <cr> pressure (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax

<cr> takes single reading

Example

Response

R <cr>

38.462 <cr> *OK <cr>

Standby

Taking reading

Transmitting

Alarm

Command syntax

The alarm pin will = 1 when pressure levels are > alarm set point. Alarm tolerance sets how far below the set point pressure levels need to drop before the pin will = 0 again.

Alarm, en, [1, 0] enable / disable alarm <cr>

Alarm,n sets alarm <cr>

sets alarm tolerance Alarm, tol, n <cr>

Alarm,? alarm set? <cr>

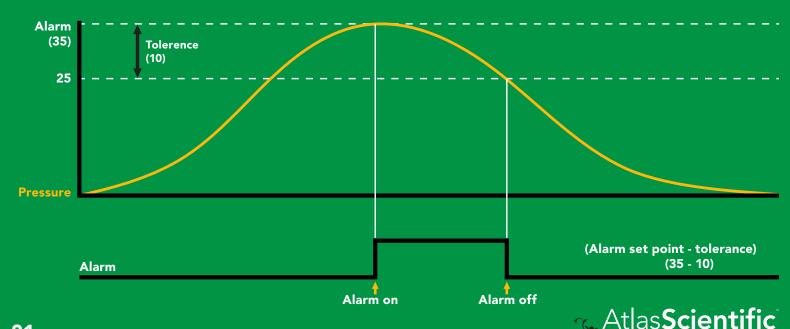
Example

Alarm,en,1 <cr>

Alarm,35 <cr>

Alarm, tol, 10 <cr>

Alarm,? <cr>


Response

*OK <cr> Enable alarm

*OK <cr>

Pressure level must fall 10 units below *OK <cr> set point for alarm to reset.

?,alarm,35,10,1 <cr> if all are enabled

Custom calibration

Command syntax

Although calibration is not required, it may be necessary to adjust your 0 point or perform a custom calibration.

calibrates the high point Cal,n <cr>

Cal,0 calibrates the zero point <cr>

Cal, clear restores calibration to factory settings <cr>

Cal,? device calibrated? <cr>

Example

Cal,50 <cr>

Cal, 0 < cr>

Cal, clear <cr>

Cal,? <cr>

Response

***OK <cr> high point calibration in psi**

*OK <cr> low point calibration in psi

*OK <cr>

?Cal,0 <cr> or ?Cal,1 <cr> or ?Cal,2 <cr> or

?Cal,3 <cr> *OK <cr>

Calibration should be done using the pressure scale you have set the sensor to.

Example

Readings are set to bar. **High point calibration = 3.44** (3.44 bar = 50 psi)

Add/remove decimal places

Command syntax

Change how many decimal points the reading outputs.

n = number of decimal points between 0 and 3 Dec,n <cr>

number of decimal points the output is set to Dec,?

Exam	e

R <cr>

Dec,1 <cr>

R <cr>

Dec,? <cr>

Response

38.462 <cr>

*OK <cr>

38.4 <cr>

?Dec,1 <cr>

Pressure units

(psi, atm, bar, kPa, inch's of water, cm of water)

Command syntax

<cr> output will be in psi default U,psi

<cr> output will be in atm U,atm

U,bar <cr> output will be in bar

<cr> output will be in kPa U,kPa

U,inh2o <cr> output will be in inches of water (Resolution: 0.027")

U,cmh2o <cr> output will be in cm of water

(Resolution: 0.7mm)

U,[1/0] <cr> 1 will add a unit identifier to the output

<cr> pressure units? **U**,?

Example Response

U,bar <cr> *OK <cr>

U,1 <cr> *OK <cr>

1.228,bar <cr>

U,? <cr> ?U,bar <cr>

Naming device

Command syntax

Do not use spaces in the name

Name, n < cr> set name

Name, <cr> clears name

Name,? <cr> show name

n = 8 9 10 11 12 13 14 15 16

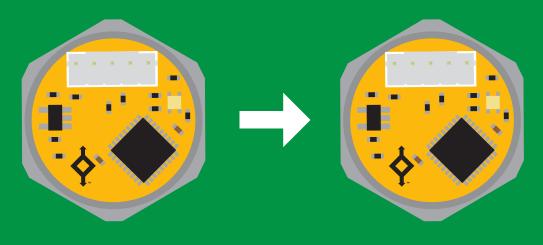
Up to 16 ASCII characters

Example

Response

Name, <cr> *OK <cr> name has been cleared

Name,zzt <cr>


*OK <cr>

Name,? <cr>

?Name,zzt <cr> *OK <cr>

Name,zzt

Name,?

*OK <cr>

?Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

Examp	ı	e

Response

i <cr>

?i,PRS,1.0 <cr> *OK <cr>

Response breakdown

?i, **PRS** 1.0 Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

38.462 <cr> *OK <cr>

*OK,0 <cr>

no response, *OK disabled

default

R <cr>

38.462 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

unknown command *ER

*OV over volt (VCC>=5.5V)

*UV under volt (VCC<=3.1V)

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

wake up *WA

These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

Response

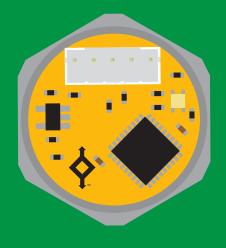
Sleep <cr>

*OK <cr>

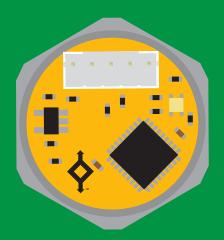
*SL <cr>

Any command

*WA <cr> wakes up device


5V

STANDBY SLEEP


0.415 mA 13.4 mA

3.3V

12.4 mA 0.13 mA

Sleep <cr>

Standby 13.4 mA

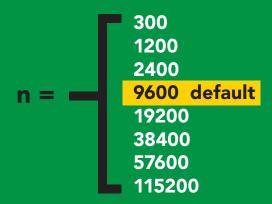
Sleep 0.415 mA

Change baud rate

Command syntax

Baud,n <cr> change baud rate

Example

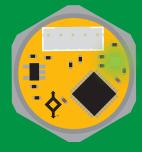

Response

Baud, 38400 < cr>

*OK <cr>>

Baud,? <cr>

?Baud,38400 <cr> *OK <cr>



Baud, 38400 < cr>

Standby

Changing baud rate

*OK <cr>

Standby

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> enable Plock

default Plock,0 <cr> disable Plock

Plock,? <cr> Plock on/off?

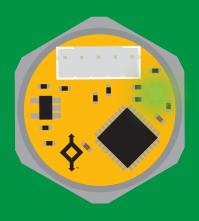
Example

Response

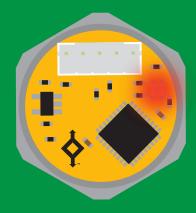
Plock,1 <cr>

*OK <cr>

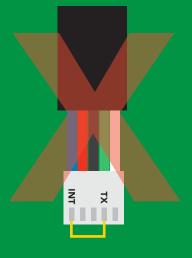
Plock,0 <cr>


*OK <cr>>

Plock,? <cr>


?Plock,1 <cr> or ?Plock,0 <cr>

Plock,1


I2C,100

*OK <cr>

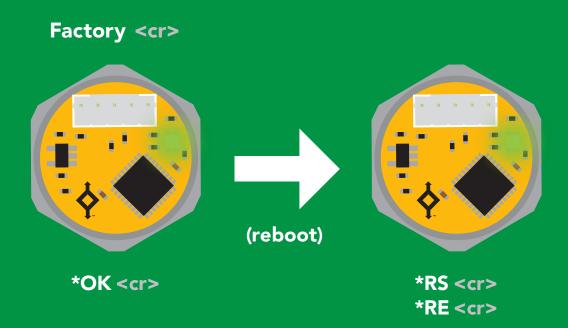
cannot change to I²C *ER <cr>

cannot change to I²C

Factory reset

Command syntax

Clears calibration LED on "*OK" enabled


Factory <cr> enable factory reset

Example

Response

Factory <cr>

*OK <cr>

Baud rate will not change

Change to I²C mode

Command syntax

Default I²C address 106 (0x6A)

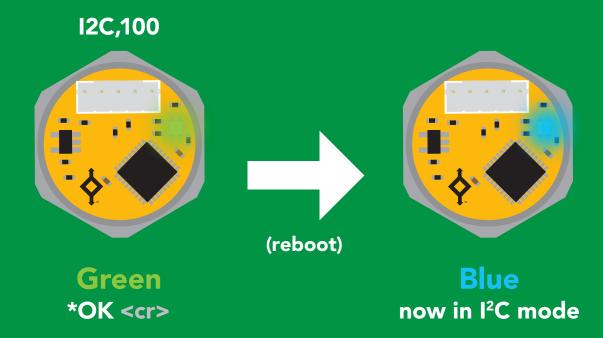
I2C,n <cr> sets I2C address and reboots into I2C mode

n = any number 1 - 127

Example

Response

12C,100 <cr>

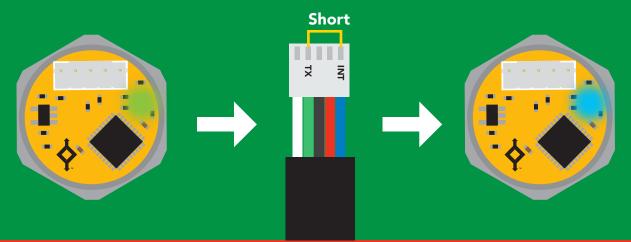

*OK (reboot in I²C mode)

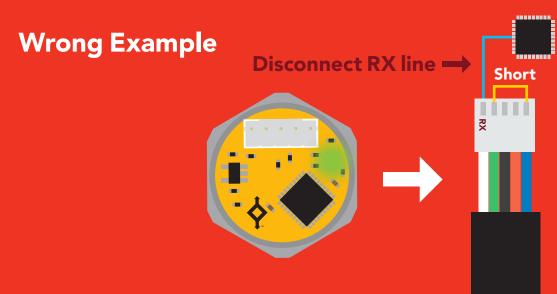
Wrong example

Response

I2C,139 <cr> n ≯ 127

*ER <cr>




Manual switching to I²C

- **Disconnect ground (power off)**
- **Disconnect TX and RX**
- **Connect TX to INT**
- Confirm RX is disconnected
- **Connect ground (power on)**
- Wait for LED to change from
- **Green to Blue**
- **Disconnect ground (power off)** Reconnect all data and power

Manually switching to I²C will set the I²C address to 106 (0x6A)

Example

l²C mode

The I²C protocol is *considerably more complex* than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

To set your EZO-PRS™ into I²C mode click here

Settings that are retained if power is cut

Calibration
Change I²C address
Custom calibration
Hardware switch to UART mode
LED control
Protocol lock
Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode

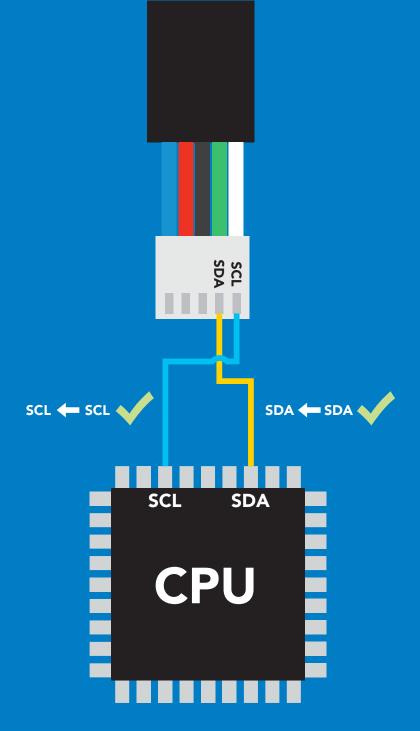
I²C mode

I²C address (0x01 - 0x7F)

106 (0x6A) default

Vcc 3.3V - 5.5V

Clock speed 100 - 400 kHz


Output pressure

Units PSI default

> (ATM, kPa, bar, inch's of water cm of water)

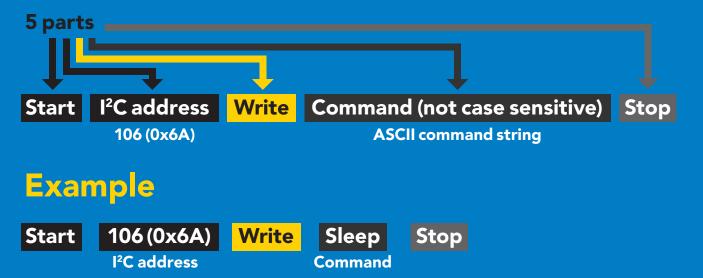
Encoding ASCII

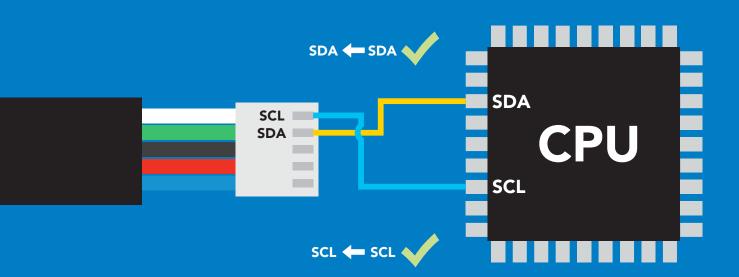
string **Format**

Data type

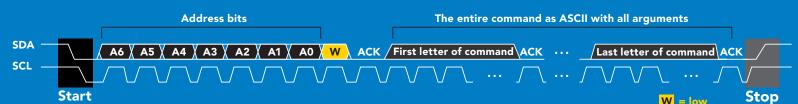
Decimal places 3

Smallest string 3 characters

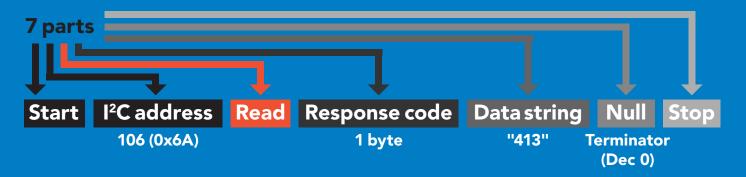

Largest string

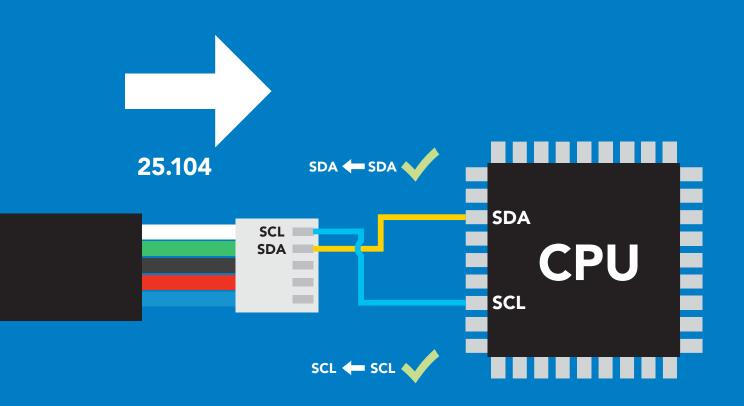

floating point

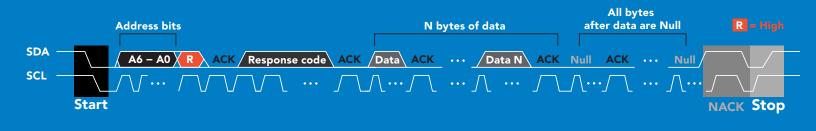
39 characters



Sending commands to device

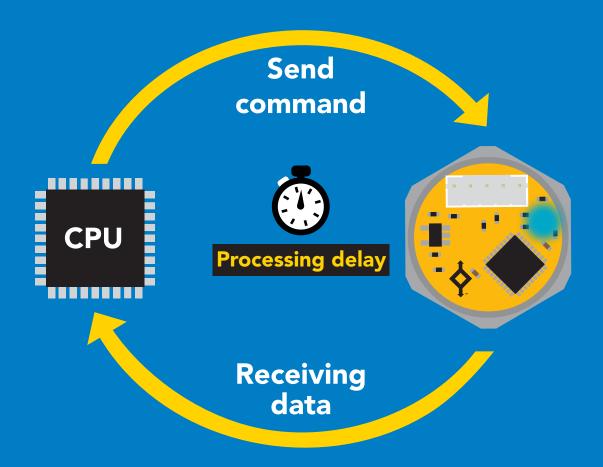



Advanced



Requesting data from device

Advanced



Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C start;

I2C address;

I2C_write(EZO_command);

I2C_stop;

delay(300);

Processing delay

I2C start: I2C_address; Char[] = I2C read; I2C_stop;

If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes

Single byte, not string

255 no data to send

254 still processing, not ready

syntax error

successful request

LED color definition

I²C standby

Green **Taking reading**

Changing I²C address

Command not understood

White **Find**

LED ON **5V** +.25 mA 3.3V +.26 mA

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Alarm	enable/disable alarm	pg. 45
Baud	switch back to UART mode	pg. 56
Cal	performs custom calibration	pg. 46
Dec	add/remove decimal places	pg. 47
Factory	enable factory reset	pg. 55
Find	finds device with blinking white LED	pg. 43
i	device information	pg. 50
I2C	change I ² C address	pg. 54
L	enable/disable LED	pg. 42
Name	set/show name of device	pg. 49
Plock	enable/disable protocol lock	pg. 53
R	returns a single reading	pg. 44
Sleep	enter sleep mode/low power	pg. 52
Status	retrieve status information	pg. 51
U	pressure units	pg. 48

LED control

Command syntax

300ms processing delay

L,1 LED on default

L,0 **LED** off

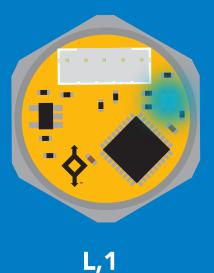
LED state on/off? **L,?**

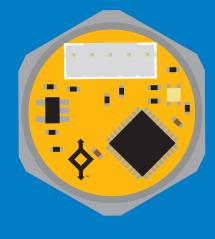
Example

Response

L,1

L,0





?L,0 **0**

Dec ASCII Null

L,0

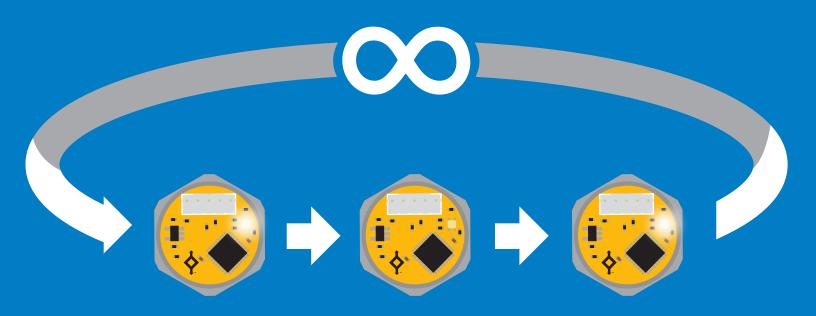
Find

Command syntax

This command will disable continuous mode. Send any character or command to terminate find.

LED rapidly blinks white, used to help find device **Find**

Example


Response

Find

Taking reading

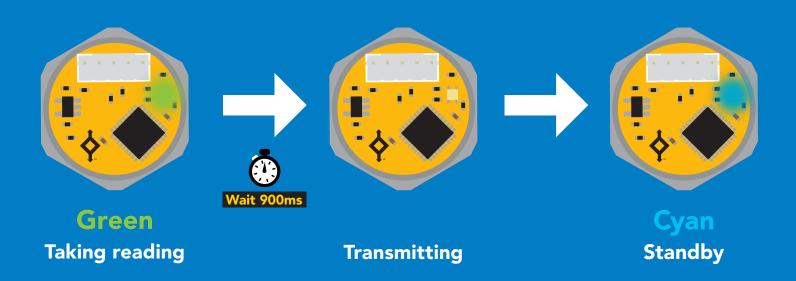
Command syntax

900ms processing delay

return 1 reading R

Example

Response


R

Alarm

Command syntax

The alarm pin will = 1 when pressure levels are > alarm set point. Alarm tolerance sets how far below the set point pressure levels need to drop before the pin will = 0 again.

enable / disable alarm **Alarm, en, [1, 0]**

Alarm,n sets alarm

sets alarm tolerance Alarm, tol, n

Alarm,? alarm set?

Example

Response

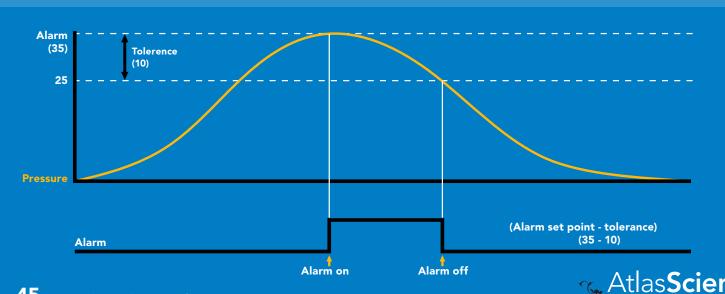
Alarm, en, 1

Enable alarm

Alarm,35

Alarm, tol, 10

Pressure level must fall 10 units below set point for alarm to reset.


Alarm,?

Dec

?,alarm,35,10,1 **ASCII**

if all are enabled

Custom calibration 900ms @ processing delay

Command syntax

Although calibration is not required, it may be necessary to adjust your 0 point or perform a custom calibration.

calibrates the high point Cal,n

Cal,0 calibrates the zero point

Cal, clear restores calibration to factory settings

Cal,? device calibrated?

Example

Cal,50

Response

Dec

high point calibration in psi

Cal.0

Dec

low point calibration in psi

Cal, clear

Cal.?

Dec

?Cal,0

Null

or

Dec

?Cal,1

ASCII

ASCII

or

?Cal,2

ASCII

or

Dec

?Cal,3

ASCII

Calibration should be done using the pressure scale you have set the sensor to.

Example

Readings are set to bar. High point calibration = 3.44 (3.44 bar = 50 psi)

Add/remove decimal places

Command syntax

Change how many decimal points the reading outputs.

n = number of decimal points between 0 and 3 Dec,n

number of decimal points the output is set to Dec,?

Example Response 38.462 R **ASCII** Dec,1 38.4 R Dec **ASCII** ?Dec,1 Dec,? **ASCII** Dec

Pressure units

(psi, atm, bar, kPa, inch's of water, cm of water)

Command syntax

output will be in psi **U**,psi

U,atm output will be in atm

U,bar output will be in bar

output will be in kPa U,kPa

U,inh2o output will be in inches of water

U,cmh2o output will be in cm of water (Resolution: 0.027")

(Resolution: 0.7mm)

U,[1/0] 1 will add a unit identifier to the output

pressure units? **U**,?

Example

Response

U,bar

U.1

Dec

1.228,bar **ASCII**

U,?

Dec

?U,bar **ASCII**

Naming device

300ms processing delay

Command syntax

Do not use spaces in the name

Name,n

set name

Name,?

Name,

clears name show name

Up to 16 ASCII characters

Example

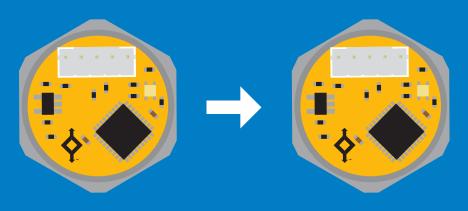
Response

Name,

name has been cleared

Name,zzt

Name,?



?Name,zzt **ASCII**

Name,zzt

Name,?

?Name,zzt

Device information

Command syntax

300ms processing delay

device information

Response

i

Response breakdown

?i, PRS, 1.0 Device **Firmware**

Reading device status

Command syntax

voltage at Vcc pin and reason for last restart

Example

Response

Status

?Status,P,5.038

ASCII

Response breakdown

?Status, Reason for restart

5.038 Voltage at Vcc

Restart codes

- powered off
- software reset
- brown out
- watchdog W
- U unknown

Sleep mode/low power

Command syntax

enter sleep mode/low power Sleep

Send any character or command to awaken device.

Example

Response

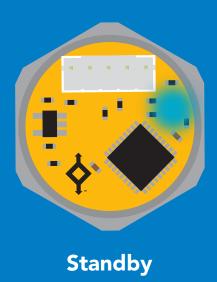
Sleep

no response

Do not read status byte after issuing sleep command.

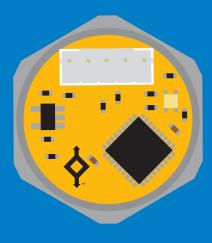
Any command

wakes up device


5V

STANDBY SLEEP

13.4 mA 0.415 mA


3.3V

12.4 mA 0.13 mA

Sleep

Protocol lock

Command syntax

300ms processing delay

Plock,1 enable Plock

Plock,0 disable Plock default

Plock,? Plock on/off? Locks device to I²C mode.

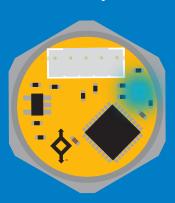
Example

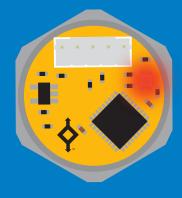
Response

Plock,1

Plock,0

Plock,?





Plock,1

Baud, 9600

cannot change to UART

cannot change to UART

I²C address change

Command syntax

300ms processing delay

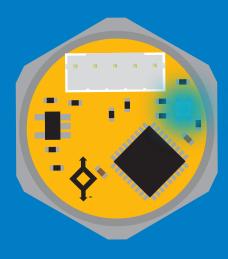
sets I²C address and reboots into I²C mode

Example

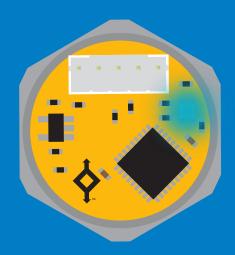
Response

I2C,101

device reboot (no response given)


Warning!

Changing the I²C address will prevent communication between the device and the CPU until the CPU is updated with the new I²C address.


Default I²C address is 106 (0x6A).

n = any number 1 - 127

I2C,101

Factory reset

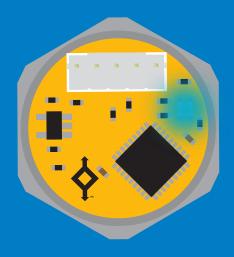
Command syntax

Factory reset will not take the device out of I²C mode.

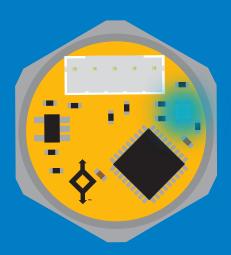
Factory enable factory reset

I²C address will not change

Example


Response

Factory


device reboot (no response given)

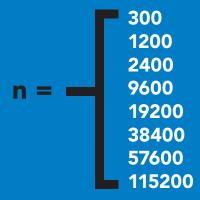
Clears calibration LED on Response codes enabled

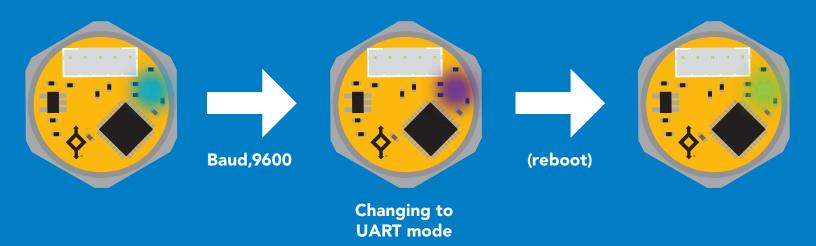
Factory

Change to UART mode

Command syntax

switch from I²C to UART Baud,n

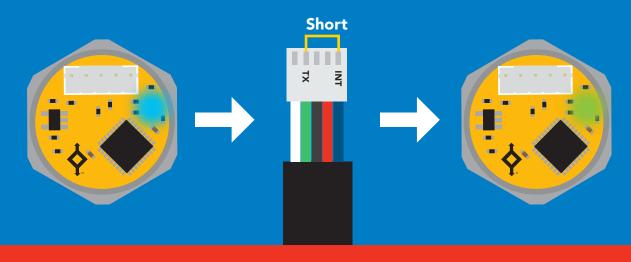

Example

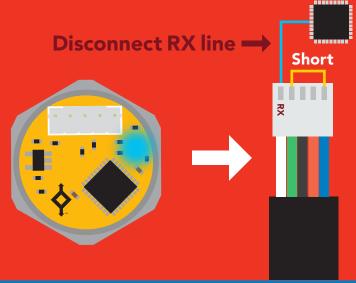

Response

Baud, 9600

reboot in UART mode

(no response given)





Manual switching to UART

- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to INT
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example

Datasheet change log

Datasheet V 2.3

Revised datasheet to relfect vacuum sensing readings.

Datasheet V 2.2

Revised artwork of sensor throughout datasheet.

Datasheet V 2.1

Revised artwork on page 8.

Datasheet V 2.0

Revised design of EZO-PRS throughout document.

Datasheet V 1.6

Revised naming device info on pages 25 & 49.

Datasheet V 1.5

Added the custom calibartion pages on pages 22 & 46.

Datasheet V 1.4

Revised accuracy value on cover page.

Datasheet V 1.3

Revised pressure output in PSI to 50.000 on cover pg. added inches of water & cm of water resolution info on pages 23 and 46.

Datasheet V 1.2

Updated firmware info on pg 55.

Datasheet V 1.1

Moved Default state to pg 9.

Datasheet V 1.0

Initial release - New datasheet

Firmware updates

V1.01 – (Nov, 5 2019)

• Fixed glitch where the alarm was not initially set correctly.

V1.02 – (April, 9 2021)

• Added custom calibration.

V1.03 – (August, 14, 2025)

• Added vacuum sensing.

Warranty

Atlas Scientific™ Warranties the EZO-PRS™ Embedded Pressure Sensor to be free of defect during the debugging phase of device implementation, or 30 days after receiving the F7O-PRS™ Embedded Pressure Sensor (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific $^{\text{\tiny{TM}}}$ is the time period when the EZO-PRS™ Embedded Pressure Sensor is inserted into a bread board, or shield. If the EZO-PRS™ is being debugged in a bread board, the bread board must be devoid of other components. If the EZO-PRS™ Embedded Pressure Sensor is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO-PRS™ Embedded Pressure Sensor exclusively and output the EZO-PRS™ data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO-PRS™ Embedded Pressure Sensor warranty:

- Soldering any part of the EZO-PRS™ Embedded Pressure Sensor.
- Running any code, that does not exclusively drive the EZO-PRS™ Embedded Dosing Pump and output its data in a serial string.
- Embedding the EZO-PRS™ Embedded Pressure Sensor into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific™ does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific[™] cannot possibly warranty the EZO-PRS™ Embedded Pressure Sensor, against the thousands of possible variables that may cause the EZO-PRS™ Embedded Pressure Sensor to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific™ devices can be soldered into place, however you do so at your own risk.

Atlas Scientific[™] is simply stating that once the device is being used in your application, Atlas Scientific can no longer take responsibility for the EZO-PRS™ Embedded Pressure Sensors continued operation. This is because that would be equivalent to Atlas Scientific™ taking responsibility over the correct operation of your entire device.

